
A Gonzo PostScript
PowerPoint Emulation

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2003 as GuruGram #20
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

I was rather disappointed when I first tried to web distribute a slide show that I
initially created in PowerPoint. Files were fragmented and huge, appearance was
awful, display was glacial, and linking was cumbersome. Worst of all, it was not
letting me do my things my way.

So, I instead decided to use my Gonzo Utilities written in raw PostScript to
emulate much if not all of PowerPoint. The new emulation can be used from the
ground up to create new slide shows, or can be used to convert an existing
PowerPoint presentation to one that web distributes significantly better. It should
be most useful on Linux and similar open source platforms as well. The results are
totally GIF free. Large bitmaps are also easily avoided.

A demo of the new emulator appears here along with its generating sourcecode.
The actual gonzo utilities are found here. As always, Gonzo gives you incredible
control, total device independence and complete flexibility. But is proudly not
WYSIWYG. Gonzo also has a moderate to steep learning curve.

What follows will make the most sense if you have an open sourcecode window
and a demo slideshow nearby. Let’s first pick up a few of tools we will need…

Backgrounds and Patterns

PowerPoint slide and splash backgrounds are normally .GIF files. Besides licensing
restrictions, these have problems with file size and PDF conversion. The PostScript
pattern capability found in the PostScript Language Reference Manual would
seem to be a good workaround to huge .GIF bitmaps.

A pattern is simply a "rubber stamp" that gets repeated over an area. These can
have quite small file sizes, yet can quickly replicate themselves. Easily covering
what would normally take a huge bitmap. Any repeatable image or artwork is a
good pattern candidate.

Here’s how to take a small image and convert it into a replicating pattern…

—1—

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/msintro1.pdf
http://www.tinaja.com/glib/msintro1.psl
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/glib/msintro1.psl
http://www.tinaja.com/glib/msintro1.pdf
http://www.tinaja.com/post01.asp
http://partners.adobe.com/asn/developer/pdfs/tn/PLRM.pdf

You first create a pattern dictionary…

/bodypatdict
 << /PatternType 1 % Tiling pattern
 /PaintType 1 % Colored
 /TilingType 1
 /BBox [0 0 50 50]
 /XStep 5 % one-tenth for gonzo grid
 /YStep 5
 /PaintProc {begin bodyrandimage end}
 >> store

And an image (or other proc) that you want to replicate…

/bodyrandimage { gsave 5 dup scale
 <</ImageType 1 % always one
 /Width hpixels % width in pixels
 /Height vpixels % height in pixels
 /ImageMatrix [hpixels 0 0
 vpixels neg 0 vpixels]
 /DataSource bodypatstring % proc to get string data
 /BitsPerComponent 8 % color resolution
 /Decode [0 1 0 1 0 1] % per red book 4.10
 >>
 image % call the image
 grestore} def

In this case bodypatstring is a string source of image data which we will look at
shortly. This could also be a small bitmap read as a file or inline as an currentfile
embedding.

And here is how the pattern actually gets used…

save /snap1 exch store % show the body background
 bodypatdict
 matrix % Identity matrix
 makepattern % Instantiate the pattern
 /bodypat exch def
 0 0 % for the actual slide size
 slidewide slidehigh
 /Pattern setcolorspace
 bodypat setcolor rectfill % Fill rectangle with pattern
snap1 restore

—2—

A save and restore should also be used around each individual slide. Otherwise a
"consumed" string pointer on the previous slide may generate errors.

Some Random Patterns

One problem I found with patterns is that they can be excruciatingly slow if the
underlying generating proc is highly complex. A solution to this is to initially
convert any really slow code into an image, and then replicate the image.

We’ve already seen some interesting random images used for photo backgrounds
and for our Dodge & Burn utilities. Here’s a new random pattern generator with
some unique features.

You start with an array of [r g b texture]. Where r, g, and b are the "nominal"
color desired. And texture is the "spread" of the three pixel colors used to make
up the random pattern. A "spread" of 40 might be appropriate for adding modest
background interest, while 120 will give more dramatic splash color variations.

Three rgb pixel values are then generated whose values deviate from "nominal" by
a zero-centered random number whose limit is set by texture. Like so…

/buildpixels {aload pop /texture exch store /b0 exch store
/g0 exch store /r0 exch store 123 srand

/r1 r0 texture random texture 2 div sub add cvi
 dup 255 ge {pop 255}if dup 0 lt {pop 0} if store
/g1 g0 texture random texture 2 div sub add cvi
 dup 255 ge {pop 255}if dup 0 lt {pop 0} if store
/b1 b0 texture random texture 2 div sub add cvi
 dup 255 ge {pop 255}if dup 0 lt {pop 0} if store

/r2 r0 texture random texture 2 div sub add cvi
 dup 255 ge {pop 255}if dup 0 lt {pop 0} if store
/g2 g0 texture random texture 2 div sub add cvi
 dup 255 ge {pop 255}if dup 0 lt {pop 0} if store
/b2 b0 texture random texture 2 div sub add cvi
 dup 255 ge {pop 255}if dup 0 lt {pop 0} if store

/r3 r0 texture random texture 2 div sub add cvi
 dup 255 ge {pop 255}if dup 0 lt {pop 0} if store
/g3 g0 texture random texture 2 div sub add cvi
 dup 255 ge {pop 255}if dup 0 lt {pop 0} if store
/b3 b0 texture random texture 2 div sub add cvi
 dup 255 ge {pop 255}if dup 0 lt {pop 0} if store

 } store

We then take these pixels and generate a 50 x 50 random array of them…

—3—

http://www.tinaja.com/glib/knockout.bmp
http://www.tinaja.com/glib/dodgebur.pdf

/makeimagestring { 12345 srand % make repeatable
 /iarray mark
 issize { r1 g1 b1} repeat] store % fill all w/color 1

 issize 2 div cvi { iarray issize % fill half w/color 2
 random 3 mul cvi [r2 g2 b2]
 putinterval} repeat

 issize 2 div cvi { iarray issize % fill third w/color 3
 random 3 mul cvi [r3 g3 b3]
 putinterval} repeat

 iarray makestring
 } store

And then convert the array to an image string using this disgustingly elegant
off-the-wall routine…

/makestring {dup length string dup /NullEncode filter
3 -1 roll {1 index exch write} forall pop} def

Here is what our initial body and splash random patterns look like…

A 50x50 image adds 3x2500 = 7500 bytes to the length of your PDF file. Being
random, compression is not going to help at all. A body and splash pattern pair
will thus need 15K. You can reduce these values by going to smaller replicating
images. Smaller images may add unattractive repeating patterns, though.

Speaking of which, note the PostScript srand random seed operator. This
guarantees you will get the same random pattern each time. Should a chosen
pattern have glitches or repeats in it, simply try a different seed.

Handling URL’s and Links

There are two elements to an Acrobat link: The url itself and an action box in
which that url will be activated on clicking. Manually reentering and repositioning
on-page action boxes with Acrobat can be an enormously painful process.

—4—

http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp

Instead, Gonzo provides for fully automatic action box tracking by placing
markers inside its text. Thus, the action boxes will automatically move around as
text gets longer or shorter. As well as automatically scaling the action box size to
approximate the font height and message length. Final page placement requires
no further effort at all.

Full details appear in our AUTOURL.PDF tutorial found in our GuruGram library.

Emulator Organization

The key to the Gonzo emulation is to have a slideshowdict dictionary that names
and positions everything that is likely to be needed. In general, you’ll want to use
indirect references when and where possible, so you can add as many styles and
options as you care to. Eventually building up an entire library of useful patterns
and layouts.

One very important slideshowdict dictionary entry is the sequence array. Which
sets the order that your slides will appear in…

/sequence [
 /an_introduction_to_magic_sinewaves
 /magic_sinewaves_are
 /magic_sinewave_features

 /for_additional_help
 /this_has_been
] store

Slides are easily added, removed, duplicated, or rearranged by changing this
array. Slides can be hidden by commenting them with a leading "%". Note that
the slides can be defined in any order in your code. Only their position in this
sequence array determines their output order.

The actual slideshow emulator routine is amazingly simple…

/makeslideshow {setupshow
 sequence {
 save /snapxx exch store
 cvx exec showpage
 snapxx restore
 } forall
 } store

This first initializes your pattern strings and does a few other housekeeping items.
It then grabs the slides one by one and executes them in order. A slide
description will typically be a title and a titleproc, a body and a bodyproc, and
perhaps some additional stroke graphics.

—5—

http://www.tinaja.com/post01.asp#gonzo
http://www.tinaja.com/glib/autourl.pdf
http://www.tinaja.com/gurgrm01.asp

A single makeslideshow command generates the entire presentation.

A Guided Tour

The emulated slide show is around 50K long, or less than one-fifth the original.
As noted, the code can be further shortened if desired.

Each and every slide images nearly instantly without lengthy bitmap delays. All
slides have outstanding typography and fully magnifiable superb artwork. All links
work as expected and need no further prep.

The final show is totally device independent and requires only a .PDF reader for
the platform of interest. No GIF’s are used at all, avoiding all licensing problems.
Nor is any part of the PowerPoint code. Single-file sourcecode is a mere 35K long.

Here’s some slide-by-slide comments on features and details of note…

an_introduction_to_magic_sinewaves — This title slide uses an ivory background
and a magenta splash, helped along with a few magenta lines. The URL link is
auto generated by the sourcecode. My preference is to never underline a URL.

magic_sinewaves_are — A typical body slide. I chose to use gray as a title color
to reduce the harshness of black. Same with the bulleted entries. Bullets are a
Zapf Dingbat and once set, stay the desired size. Bullets could be tinted if desired.

and_limitations — colored text is easily highlighted, but use red sparingly and
only for key points.

magic_sinewave_appearance — This uses a real magic sinewave to exactly
generate the needed artwork. Only a few dozen bytes of code are needed. Display
time is ridiculously faster than a converted .GIF bitmap. The degree symbols are
faked using a superscript font and a plain old "o".

typical_unfiltered_spectrum — Again, this uses a few bytes of Gonzo stroke
graphics to create a graph. Horizontal and vertical lettering can be mixed and
matched at will. PowerPoint .GIF graphs do not translate lettering very well.

typical_unfiltered_spectrum_FLASH — This adds a "key point" message on top of
an existing slide. It also shows us how we can do progressive builds. Flashing has
been added to this slide by using JavaScript as detailed in the PDFFLASH.PDF of
GuruGram #48.

magic_sinewave_generation — A typical electronic schematic. This takes heavier
lettering than the normal Gonzo electronic symbols. As before, the viewing time is
much faster than an converted .GIF bitmap.

two_important_magsine_types — Two colored text entries were added to
prevent the "everything bold" from overwhelming. Note the fine kerning of the
math expressions. An extra point of spread goes between the parenthesis or the
slashes.

—6—

http://www.tinaja.com/glib/msintro1.pdf
http://www.tinaja.com/glib/pdfflash.pdf
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/post01.asp#gonzo

key_magsine_secret_I — A mix of a simple stroke graphic, text, and a red
highlight.

key_magsine_secret_II — A slightly smaller font is used for the numerals. Gonzo
places no sane limits on font sizes or variations. Again, there is slight kerning on
the parenthesis.

fourier_pulse_properties — The big math expressions form a graphic in
themselves. Note that a "*" is normally too small and too high to look good. So a
larger and subscripted font was used for the asterisks. As usual, some subtle
kerning makes for top appearance.

the_magic_equations — This is waaay too much math detail to show in a slide.
But it is the key point of the presentation and is easily magnified. Most viewers
eyes will blur over anytime they see either math or poetry. While still delivering
the message "this is a key bunch of very messy math". I didn’t fix the asterisks
here, but easily could have done so.

equation_simplification — Always work in a terrible and unexpected pun.

quantization — A typical slide with an auto-tracking, auto-boxing link.

how_big_should_n_be — Use exclamation points very sparingly.

for_additional_help — Combining several URL’s with text.

this_has_been — Keep "penalty of death" notices small. But still obvious.

Getting Fancy

Note that Acrobat PDF has a full screen mode that lets you do fancy transitions,
automated sequencing, and such. Thus, most PowerPoint features are easily
emulated. Flashing is easily done using the JaveScript concepts of PDFFLASH.PDF
found in GuruGram #48.

For some reason, Adobe steadfastly refuses to let you run full screen .PDF from
within a browser. Thus, you’ll have to actually download the file before running a
full screen display.

For More Help

Additional background along with related utilities and tutorials appears on our
GuruGram, PostScript, Acrobat, and Fonts & Bitmaps library pages.

Consulting assistance on any and all of these and related topics can be found at
http://www.tinaja.com/info01.asp. As can our presentation development
services.

Additional GuruGrams await your ongoing support as a Synergetics Partner.

—7—

http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/glib/pdfflash.pdf
http://www.tinaja.com/gurgrm01.asp
http://www.adobe.com
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/aafont01.asp
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp

